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Abstract. The so called dual parametrization method for quadratic semi-infinite programming
(SIP) problems is developed recently for quadratic SIP problems with a single infinite constraint.
A dual parametrization algorithm is also proposed for numerical solution of such problems. In this
paper, we consider quadratic SIP problems with positive definite objective and multiple linear
infinite constraints. All the infinite constraints are supposed to be continuously dependent on their
index variable on a compact set which is defined by a number equality and inequalities. We prove
that in the multiple infinite constraint case, the minimu parametrization number, just as in the
single infinite constraint case, is less or equal to the dimension of the SIP problem. Furthermore,
we propose an adaptive dual parametrization algorithm with convergence result. Compared with
the previous dual parametrization algorithm, the adaptive algorithm solves subproblems with much
smaller number of constraints. The efficiency of the new algorithm is shown by solving a number
of numerical examples.
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1. Introduction

Consider the following semi-infinite programming (SIP) problem

PROBLEM (P).

T Tmin f(x)5 (1 /2)x Qx 1 p x , (1)

subject to A( y)x 2 b( y)< 0 for y [Y , (2)

T n T nwhere x 5 (x , x , . . . , x ) [R is the decision vector, p 5 ( p , p , . . . , p ) [R1 2 n 1 2 n
n3n m3nis a constant vector, Q [R is a positive definite matrix, and A( y): y → R and

mb( y): y → R are continuously differentiable functions defined on a given compact
sset Y ,R . The vector inequality (2) is to be understood as component-wise

inequalities.
Dual parametrization method was developed recently for the case m 5 1 [6,7]. It

is shown in [7] that for the case m 5 1, of all the infinitely many constraints, only no
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more than n of them will be sufficient for locating the optimal solution. In other
words, for some k < n, the solution of the SIP problem is the same as the solution of
a finite quadratic programming problem obtained by replacing the infinitely many
constraints with k of them, if those k constraints are suitably chosen. However, both
the integer k and the k index points corresponding to the k ‘suitable’ constraints are
not known. Therefore, the k unknown ‘suitable’ index points are taken as variables
for an estimated k which is large enough. This leads to the dual parametrization
method which transforms the SIP problem into a finite nonlinear programming
problem. It is shown in [7] that for the positive definite case, a global solution of the
nonlinear programming problem obtained from the dual parametrization method
directly gives rise to the optimal solution of the SIP problem.

Here we will present the dual parametrization results in a general setting, namely
in the case where there are multiple (m . 1) infinite constraints. Especially, we will
prove that the bound for the optimal parametrization number k* remain to be n for
m . 1. This result is not surprising because, as far as the total number of constraints
involved is concerned, there is no difference between a single infinite constraint and
several infinite constraints. Now the question is how to find a global solution to the
nonlinear optimization problem—the parametrized dual problem. By using a method
similar to that of [7], we can prove that all results obtained for the case m 5 1 carry
over to the case m . 1 and the dual parametrization method applies to the general
case. Global optimization problem is notoriously difficult to solve. Efficient
numerical algorithms for global solution have been possible only for some special
classes of optimization problems. In [9], a numberical method for computing a
global solution of the parametrized dual problem is developed based on some
special feature of the parametrized dual problem. The global solution method further
leads to a dual parametrization algorithm for the original SIP problem. The
algorithm has a demonstrated efficiency in practical computations. However, the
global solution method involves an iterative scheme which requires to solve
problems with increasingly large number of constraints. Therefore, some improve-
ment on the dual parametrization algorithm, namely the introduction of an adaptive
scheme, is desirable. This desired improvement is considered in this paper. We note
that the dual parametrization method is different from the discretization methods
existing for SIP problems. Discretization methods usually replace the infinitely
many constraints with a finite number of constraints. By solving the corresponding
finite optimization problem (or a sequence of them), an approximate solution, which
is usually infeasible, is obtained. The dual parametrization method works with the
dual problem and tries to find an approximate solution of it. Once this is done, one
more local search will lead to the exact solution (up to computer precision) of the
SIP problem.

We will first present the dual parametrization method for problem (P) in Section
2. The theory of dual parametrization method for the multiple infinite constraint case
is similar to the single infinite constraint case. Therefore, most results will be stated
without proof. Following Section 2, an adaptive dual parametrization algorithm will
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be developed in Section 3. Convergence result regarding the global optimization of
the parametrized dual is given. The efficiency of the adaptive algorithm is shown by
solving a number of numerical examples.

2. Dual parametrization

In this section we extend the main results in dual parametrization technique to the
case where multiple infinite constraints are considered. For the remainder of this
paper, we assume that the following constraint qualification is satisfied.

nASSUMPTION 1 (Slater Condition). There is an x [R such that0

A( y)x 2 b( y), 0 for all y [ Y . (3)0

We denote by C(Y) the Banach space of all continuous real functions on Y
equipped with the supremum norm, and by M(Y) the space of all signed finite
regular Borel measures on Y. It is known that M(Y) is the dual space of C(Y). Let V
be the cone of C(Y) consisting of all the nonnegative functions in C(Y). The cone in
M(Y) associated with V, denoted by V 9, consists of all the nonnegative elements
(nonnegative as measure) of M(Y). Thus, L[V 9 if and only if L( f )> 0 for all
f [V. We will use the same sample ‘> ’ to denote the partial orders in both C(Y)
and M(Y) induced by V and V 9, respectively. To be more specific, if f and g are two
elements in C(Y) (respectively, M(Y)), we write f > g (equivalently, g < f ) if and
only if f 2 g [V (respectively, V 9).

nLet A: R → C(Y) be the operator defined by

(Ax)( y)5 A( y)x for y [ Y (4)

and denote by A* the dual of A. Note that we have used the same symbol A for both
the matrix function and the corresponding operator. However, this should not cause
any confusion in the context. Using the above notations, problem (P) can be stated
as

T Tmin f(x)5 (1 /2)x Qx 1 p x ,

subject to Ax 2 b < 0 .

The Dorn’s dual of problem (P) can be written as:

PROBLEM (P9)

Tmin (1 /2)x Qx 1 kL, bl
x,L

s.t. Qx 1 p 1 A*L5 0 (5)

L> 0

where
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kL, bl5E b( y) dL( y) . (6)
Y

The following three preliminary results, including the KKT optimality conditions
and the Caratheodory’s lemma, are important in the proof of the main result. The
first two results are standard (see, e.g., [7, 11, 12] and the third one is given in [7].
We state them in the following without proof.

LEMMA 2.1 (KKT conditions). Let the Slater constraint qualification be satisfied.
nThe minimum of problem (P) is achieved at x*[R if and only if x* is feasible and

three exists a L*[M(Y) such that

Qx*1 p 1 A*L*5 0 ,

kL*, Ax*2 bl5 0 , (7)

L*> 0

n´LEMMA 2.2 (Caratheodory). Let X be a subset of R . If x [ coneX, i.e., x is a
nonnegative linear combination of points in X, then there exist n numbers a > 0i

such that
n

ix 5O l xi
i51

ifor some x [X, i 5 1, 2, . . . , n, i.e., x can be represented as a nonnegative linear
combination of at most n points of X.

LEMMA 2.3. Let Assumptions 1 be satisfied, and assume that the minimum of
nproblem (P) is achieved at x*[R . Then L* is a multiplier satisfying the KKT

conditions (7) if and only if (x*, L*) is a solutions to the dual problem (P9).

The dual parametrization method is based on the following result.

THEOREM 2.1. Let Assumption 1 be satisfied, and assume that the minimum of
nproblem (P) is achieved at x*[R . Then the solution set of the dual problem (P9)

contains a solution pair of which the measure has a finite support of no more than n
points.

Proof. In view of Lemma 2.3, we need only to prove that there is a finite support
measure L* with no more than n supporting points, such that (x*, L*) satisfies the
KKT conditions (7).

¯Since x* is a primal solution, from the KKT theorem, there exists a measure L
¯such that (x*, L) satisfies the KKT conditions (7). Denote the active set of problem

(P) at x* by Y(x*):

Y(x*)5 hy [Y: A( y)x*2 b( y)5 0j . (8)
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From the continuity of A( y) and b( y) and the compactness of Y, we see that Y(x*) is
¯either compact or empty. It follows from (7) that the support of L satisfies

¯supp(L), Y(x*) . (9)

Thus, (7) means

¯Qx*1 p 1E A( y)T dL5 0 . (10)
Y(x*)

Hence

T i¯2 (Qx*1 p)5E A( y) dL[ coneha ( y): y [ Y(x*), i 5 1, 2, . . . , mj .
Y(x*)

(11)
i Twhere a ( y) is the ith column of A( y) . From Lemma 2.2, there exist an integer

i jk < n, k vectors a ( y*), j 5 1, 2, . . . , k, and k constants a*> 0, j 5 1, 2, . . . , k suchj j

that
k

ij2 (Qx*1 p)5O a*a ( y*) (12)j j
j51

where 1< i <m and y*[ Y(x*), j 5 1, 2, . . . , k. Let l* be the m-dimensionalj j j

vector whose elements are all zero except for its i -th element which is a*. Definej j

an m-dimensional measure L* with a finite support hy*: j 5 1, 2, . . . , kj byj

L(hy*j)5l*, j 5 1, 2, . . . , k . (13)j j

The measure L* thus defined has a finite support of k < n supporting points and
satisfies L*> 0,

TQx*1 p 1E A( y) dL*( y)
Y

k
T

5Qx*1 p 1O A( y*) l*j j
j51

k
ij5Qx*1 p 1O a*a ( y*)j j

j51

5 0 (14)

and, since y*[Y(x*),j

kL*, Ax*2 bl
k

T
5O (A( y*)x*2 b( y*)) l*j j j

j51

5 0 . (15)

Thus (x*, L*) satisfies the KKT conditions.
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A question one may ask is how to identify the integer k. In fact, identifying k is
not easy before knowing the solution of problem (P9). Fortunately, that is notk

important as our algorithm to be presented later will require k increase as the
iteration goes on. However, a result about this parametrization number given in [9]
is helpful in understanding the possible values of k. The result is given below
without proof. For the proof, we refer interested readers to [9].

LEMMA 2.4. For problem (P9), the following are true.k

(a) The optimal value sequence hv(P9)j is non-increasing and there is a k*> 0 suchk

that

9v(P )5 v(P9), for all k > k*k* k

and if k*> 1

9 9v(P ). v(P ) .k*21 k*

(b) The number k* in (a) is the minimum integer such that for k> k*, a global
solution of problem (P9) provides the solution of problem (P) in the sense thatk

if (x*, l*, t*) is a global solution of problem (P9), then x* is the solution ofk

problem (P).
(c) The number k* satisfies 0< k*< n.
(d) If 0< k, k*, then

9v(P9). v(P ) . (16)k k11

The number k* in the above lemma is called the minimum parametrization number
in [9]. The importance of Theorem 2.1 lies in the fact that it allows us to reduce
problem (P9) to a finite dimensional problem. In order to solve the primal problem
(P), we need only to find a solution pair (x*, L*) of problem (P9). Thus, from
Theorem 2.1, we can restrict our search for L* to those nonnegative measures
having a finite support of no more than k supporting points, assuming k > k*. Such a
measure, denoted by L , is characterized by its k supporting points y [Y, i 5k i

1, 2, . . . , k, and the corresponding measure l 5L (hy j)> 0, i 5 1, 2, . . . , k at eachi k i

point. Replacing L in problem (P9) by L , we obtain the following finitek

dimensional mathematical programming problem

PROBLEM (P9)k

k
T Tmin (1 /2)x Qx 1O b( y ) li i

x,l,t i51

k
Ts.t. Qx 1 p 1O A( y ) li 5 0 (17)i

i51

l > 0, i 5 1, 2, . . . , k ,i

y [ Y, i 5 1, 2, . . . , ki
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k mwhere l5 (l , l , . . . , l ) is in the product space p R and t 5 ( y , y , . . . , y )1 2 k i51 1 2 k
k sis in the product space p R .i51

Problem (P9) is called the parametrized dual of problem (P) ([9]). From thek

above discussion, we see that for any k > k*, once a global solution (x*, l*, t*) of
problem (P9) is obtained, then x* must be the solution of problem (P). Thus, ink

order to sovle problem (P), we need only to deal with problem (P9). In the nextk

section, we present a numerical algorithm for solving problem (P9) for some k > k*.k

3. Algorithm

In the previous section, we have reduced problem (P9) to a finite programming
problem. Therefore, in order to solve problem (P), we need only to solve problem
(P9). However, problem (P9) is nonlinear and the challenge is to find its globalk k

solution. In [9], an algorithm is proposed to compute a global solution of problem
(P9). The algorithm combines a refinement scheme on the parametrization of thek

index set Y and a local search. It can be described briefly as follows: Choose an
integer k and a k tuple t 5 ( y , y , . . . , y ) of index points y [Y, i 5 1, 2 . . . , k.1 2 k i

Solve the following problem.

PROBLEM (P9(t))k

k
T Tmin (1 /2)x Qx 1O b( y ) l (18)i i

x,l i11

k
Ts.t. Qx 1 p 1O A( y ) l 5 0 (19)i i

i11

l > 0, i 5 1, 2, . . . , k . (20)i

At the optimal solution, increase k and refine the grid points y , y , . . . , y in such a1 2 k

way that max min iy 2 yi→ 0 as k →`. The solve problem (P9(t)) again.y[Y 1<i<k i k

Repeat this procedure until some stopping criterion is satisfied. At the termination, a
¯vector of approximate index points t together with the corresponding optimal

¯ ¯¯ ¯ ¯ ¯solution (x, l ) to problem (P9(t )) is obtained. The triple (t, x, l ) provides ank

approximate solution to problem (P9). If this approximate solution is good enough, itk
¯¯ ¯is expected that (t, x, l ) lies in the basin of a global solution of problem (P9). Thenk

a global solution for problem (P9) can be obtained by performing a local searchk

starting from this approximate solution, provided that the technique used in the local
search is stable in the sense that it always finds the local solution which shares the
same basin with the starting point (initial solution). One of the advantages of the
above-mentioned algorithm is that for each fixed t, problem (P9(t)) is a convexk

quadratic problem with linear constraints and is easy to solve. However, when k
increases, the number of constraints in problem (P9(t)) becomes very large. This willk

increase the computing cost and may cause numerical difficulties. In the following,
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we propose an adaptive scheme so that at each iteration, a much smaller number of
constraints in problem (P9(t)) are selected.k

k sLEMMA 3.1. Let t 5 ( y , y , . . . , y )[p R be any k tuple of index points.1 2 k j51

Then, problem (P9(t)) is the Dorn’s dual ofk

PROBLEM (P (t))k

T Tmin (1/2)x Qx 1 p x (21)
x

s.t. A( y )x 2 b( y )< 0, j 5 1, 2, . . . , l . (22)j i i

ˆFurthermore, a vector x is the solution of problem (P (t)) iff there exists somek
k mˆ ˆ ˆ ˆ ˆˆl5 (l , l , . . . , l )[p R such that h(x, l )j is a solution of problem (P9(t)).1 2 k j51 k

The optimal values of problem (P (t)) and problem (P9(t)) satisfiesk k

v((P (t))52v(P9(t)).k k

Proof. The first part of the lemma is easy to check since this is a special case of the
primal-dual relation of problem (P) and problem (P9). the second part of the lemma
is standard and can be found in [8]. h

` iLet hk j be a given sequence of integers. For i > 1, let Y 5 hy : j 5i i51 i j

1, 2, . . . , k j be a given subset of Y satisfyingi

iˆd(Y , Y)5max min uy 2 y u→ 0 . (23)i j
y[Y 1<j<ki

We propose the following algorithm:

ALGORITHM I
01. Choose an arbitrary x , a small number ´ , 0, an integer N, and a sequence of

parametrization sets
iY 5 hy : j 5 1, 2, . . . , k j, i 5 0, 1, . . .i j i

satisfying (23).
02. Let E 5f. Set i 5 0.

3. Set i 5 i 1 1,
i i21 i21V 5 hy [ Y uA( y)x 2 b( y)> 0j<E .i

i i i i i i i i iSuppose V has l elements V 5 hz , z , . . . , z j. Let t 5 (z , z , . . . , z ).i 1 2 k 1 2 l ii i i
94. Solve problem (P (t )) to obtain a solution (x , l ).l i

i i215. If i <N or f(x )2 f(x )>´, let

i i iE 5 hy [V uA( y)x 2 b( y)5 0j ,

go to step 3.
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i i i i
96. Solve problem (P (t )), starting from (x , l , t ). The optimal solution is denotedl i

by (x*, l*, t*). Then x* is taken as the solution for problem (P).

In the following, we prove that if the sequence of parametrization points Y ,i
ii 5 1, 2, . . . , satisfies (23), then the solution sequence hx j obtained from Algorithm

I converges to the solution of the problem (P).

iTHEOREM 3.1. If (23) is satisfied, then the sequence hx j obtained from Algorithm
I converges to the solution of problem (P). Therefore, if ´ and N are suitably
chosen, the x* obtained in Step 6 is the optimal solution of problem (P).

i i iProof. From Lemma 3.1, we see that x is the solution of problem (P (t )). Since Elii iis the active index set of problem (P (t )) at the solution x , if we reduce thel ii iconstraints of problem (P (t )) to those corresponding to E , the solution f thel ii i11 i11problem is still x . On the other hand, x is the solution of problem (P (t )) ofl i11i11 iwhich the constraint index set is V which contains E as a subset. Thus it is easy
to see that

i11f(x )< f(x ), i 1 1,2, . . . . (24)i

The existence of a Slater point x for problem (P) shows that the sequence h f(x )j is0 i

bounded from above by f(x ). Thus, there exists some constant f * such that0

if(x ) → f * (i →`) . (25)
iThe strict convexity of f(x) and the boundedness of h f(x )j shows that the sequence

i i¯hx j is bounded. Let x be a limit point of hx j. Then there exists a subsequence hx jikiof hx j such that

¯lim x 5 x . (26)ikk→`

¯ ¯We now show that x is a feasible point of problem (P). In fact, if x is not a feasible
¯point of problem (P), then there exists y [Y such that g(t , x ). 0. Let g( y ,0 0 0

x̄ )5 2d. Since g( y, x) is continuous, we see that there exists ´ . 0 such that

¯ ¯ug( y, x)2 g( y , x )u,d, for iy 2 y i,´, ix 2 x i,´ (27)0 0

as a result, we have

¯g( y, x)>d, for iy 2 y i,´, ix 2 x i,´ . (28)0

From (23) and (26), thee exists an integer K such that for k >K, we can choose
iky [ Y satisfyingj ik k

i ik k ¯iy 2 y i,´, ix 2 x i,e /2, for k >K . (29)j 0k

Thus,
i ik kg( y , x )>d, for k >K . (30)jk
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i k11kIt is clear that y [V and hencejk

i i 11k kg( y , x )< 0, for k >K . (31)jk

i 0kSince for k >K, iy 2 y i,´ andjk

i i 11k k ¯ug(( y , x )2 g( y , x )u> 2d ,j 0k

(27) shows that
i 11k ¯ix 2 x i>´ for k >K . (32)

From (29) and (32), we have

i 11 ik kix 2 x i>´ /2, for k >K . (33)

i 11kIt is clear that hx j has a converging subsequence. Without loss of generality, we
suppose that the subsequence converges itself:

i 11k ˆx → x, (k →`) .

Then we have

¯ ˆix 2 x i>´ /2 , (34)

¯ ˆf(x )5 f(x ) . (35)
ikNote that x is the solution of problem

T Tmin (1/2)x Qx 1 p x (36)
x

iks.t. A( y)x 2 b( y)< 0, y [E . (37)
i 11kand x is a feasible point of the same problem. Thus, since the feasible set of the

above problem is convex and its objective function is strictly convex, we see that
i i 11k kf(x) is strictly monotone along the segment connecting x and x . Thus,

i i i 11 i 11k k k kf(x ), f((x 1 x ) /2), f(x ) . (38)

Let k →` in (38) inequality, we obtain

¯ ¯ ˆ ˆf(x )< f((x 1 x ) /2)< f(x ) . (39)

¯ ˆThe strict convexity of f(x), together with (35) and (39), shows that x 5 x which
¯contradicts to (34). Therefore, x is feasible to problem (P).

iNext we show that the whole sequence hx j converges to the solution x* of
i ikproblem (p). Suppose hx j does not converge. Then there two subsequences hx j and

jkhx j converging to x9 and x0, respectively, where x9± x0. Then both x9 and x0 are
feasible to problem (P) as we proved above. The point (x91 x0) /2 is feasible to
problem (P) and hence feasible to problem (P (t)) for all k > 1. Therefore,l ik

f((x91 x0) /2), ( f(x9)1 f(x0)) /25 f *.
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ikSince f(x ) → f *) as k →`, we have, for sufficiently large k,

ikf((x91 x0) /2), f(x ).

i ik kThis contradicts to the fact that x is the solution to problem (P (t )). Theorem,l ik
ihx j converges to x*. It is clear that x* is the solution of problem (P). The problem is

complete. h

4. Numerical example

In this section, we demonstrate the efficiency of the adaptive algorithm by solving
two numerical examples. The two examples are from previous works and were
solved in [9]. For these examples, the index sets for the infinite constraints are

1intervals of R . The sequence of parametrization sets Y , i 5 0, 1, . . . , are chosen ini

the following way. Once Y is given, Y , k > 1 consists of the midpoints of each pair0 k
k21of adjacent points in < Y .j51 j

EXAMPLE 1.
Tmin x Qx

s.t. A( y)x 2 b( y)< 0, for y [ [0, 5]

where

4 1 0 ? ? ? 0
1 4 1 ? ? ? 0Q 5 (40)

:3 4
0 0 0 ? ? ? 4

2 2 22( y21(5 / 16)) 2( y22(5 / 16)) 2( y216(5 / 16))A( y)5 (2 e , 2 e , . . . , 2 e ) (41)

b( y)5 2 32 4.5 sin(4.7p( y 2 1.23) /8) . (42)

The original form of this example is given in [6]. It was modified into the current
form in [9]. In order to solve this problem using the adaptive algorithm developed in
the previous section, we choose the parametrization sequence hY j as follows:i

Y 5 h0, 2.5, 5j, for i > 2, Y consists of the midpoints of all pairs of adjacent points1 i
i21in < Y . Computational results are shown in Table 1. We note that the activej51 j

constraint index points at the solution is identified as y*5 2.06165 and y *51 2

5.00000 which is exactly the same as those obtained in [6] and [9]. The optimal
solution also coincides with the previous computations up to seven decimal digits.

0We tested several different values for x . All results are similar to that presented in
Table 1.

2EXAMPLE 2. The one-sided L approximation of the tangent function on [0, 1) by
polynomials of degree not exceeding n is stated as [7]
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Table 1. Results for Example 1

Approximate x [0.084044 0.142695 0.258183 0.436827
0.707666 1.046537 1.345125 1.453519
1.303190 0.987357 0.708656 0.664137
0.914220 1.451353 1.763188 2.606933]

Approximate l 0.000000 1.975311 16.463732 0.000000 24.350055
Optimal x [0.076461 0.204917 0.486116 0.927634

1.437805 1.808159 1.845673 1.530850
1.039785 0.610216 0.404887 0.495781
0.855648 1.458993 1.798618 2.668698]

Optimal objective 154.116154

n1 2
i21min E O x t 2 tan(t) dtS Dix 0 1

n
i21s.t. O2 x t < 2 tan(t), for t [ [0, 1] .i

1

The problem is transformed into the standard quadratic form (the form of problem
(P)) by specifying Q, p, A and b.

Q 5 [2 /(i 1 j 2 1)] ,n3n

1
n21 Tp 5E [1, t, . . . , t ] tan(t) dt ,

0

n21A(t)5 [21, 2t, . . . , 2t ] ,

b(t)52tan(t) .

As in [9], we solved this problem for the cases from n 5 2 to n 5 9. The numerical
solutions obtained by the adaptive algorithm are the same as those presented in [9].
It is observed that, for the cases n > 6, the adaptive algorithm is faster than the
algorihm given in [9]. This suggest that the adaptive algorithm of this paper is more
efficient for larger problems. The sequence of parametrization sets are determined as
in Example 1 except we choose Y 5 h0, 1j here. The computational results for the0

case of n 5 9 is presented in Table 2. The computed optimal solution and the active

Table 2. Results for Example 2

n 9
Approximate x [0.002584 0.920014 0.607620 2 1.334997

1.517024 0.482381 2 0.286100 2 1.490102 1.060138]
Optimal x [0.002560 0.919760 0.606718 2 1.335399

1.516566 0.484284 2 0.285038 2 1.410207 1.059893]
Optimal objective 0.278718
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constraint index points at the computed primal solution are the same as those
obtained in [9].

5. Comments

In this paper, we developed a global optimization algorithm for the class of
nonlinear programming problems obtained from positive LQ SIP problems by the
dual parametrization method. Convergence result is given and some useful prop-
erties regarding the relation between the primal SIP and transformed nonlinear
programming problem are discussed. Two existing examples are solved by the
algorithm and the numerical results show that the algorithm is efficient in finding the
global solution.

References

[1] Fiacco, A.V. and Ishizuka, Y. (1990), Suggested Research Topics in Sensitivity and Stability
Analysis for Semi-infinite Programming, Annals Oper. Res. 27, 65–76.

[2] Goberna M.A. and M.A. Lopez (1998), Linear Semi-infinite Optimization, John Wiley &
Sons, Chichester.

˚[3] Gustafson S.-A. and Kortanek, K.O. (1983), Semi-infinite Programming and Applications, in
Bachen, A., et al. (eds.), Mathematical Programming: the State of the Art, Springer, Berlin,
pp. 138–157.

[4] Hettich, R. (1983), A review of Numerical Methods for Semi-infinite Optimization, in
Fiacco, A.V. and Kortanek, K.O. (eds.), Semi-infinite Programming and Applications,
Springer, Berlin, pp. 158–178.

[5] Hettich R. and Kortanek, K.O. (1993), Semi-infinite Programming: Theory, Method, and
Applications, SIAM Review 35, 380–429.

[6] Liu, Y. Teo, K.L. and Ito, S. (1999), A Dual Parameterization Approach to Linear-quadratic
Semi-infinite Programming Problems, Optimization Methods and Software, 10, 471–491.

[7] Ito, S. Liu Y. and Teo, K.L. A Dual Parametrization Method for Convex Semi-infinite
Programming, Annals of Operations Research, to appear.

[8] Liu Y., Teo, K.L. and Ito, S. (1999), A Dual Parametrization Approach to Linear-Quadratic
Semi-infinite Programming Problems, Optimization Methods and Software 10, 471–491.

[9] Liu Y., Teo, K.L. and Ito, S. Global Optimization in Linear-Quadratic Semi-infinite
Programming, Computing, to appear.

[10] Luenberger, D.G. (1969), Optimization by Vector Space Method, John Wiley & Sons Inc.,
New York, London, Sydney, Toronto.

[11] Mangasarian O.L. and Ponstein, J. (1965), Minmax and Duality in Nonlinear Programming,
Journal of Mathematical Analysis and Applications 11, 504–518.

[12] Rockafellar, R.T. (1970), Convex Analysis, Princeton Mathematical Series 28, Princeton
University Press, Princeton, NJ.

[13] Teo, K.L. Rehbock, V. and Jennings, L.S. A New Computational Algorithm for Functional
Inequality Constrained Optimization Problems, Automatica, 789–792.


